If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64+b^2=265
We move all terms to the left:
64+b^2-(265)=0
We add all the numbers together, and all the variables
b^2-201=0
a = 1; b = 0; c = -201;
Δ = b2-4ac
Δ = 02-4·1·(-201)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{201}}{2*1}=\frac{0-2\sqrt{201}}{2} =-\frac{2\sqrt{201}}{2} =-\sqrt{201} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{201}}{2*1}=\frac{0+2\sqrt{201}}{2} =\frac{2\sqrt{201}}{2} =\sqrt{201} $
| 8m+-6=-54 | | 3/8•x=-15/32 | | 15/5=6/y | | X+6=x+30 | | (C-5)/4-(6-c)/8=1 | | X+x+1+x+2=2/3+9/7 | | 6(p-1)-p=-2(p+2)+p-1 | | X+x+1+x+2=831 | | 21x+27=21x+27 | | 21x+27=21x+26 | | 32y+4y=7 | | -8+4x=6 | | b+b+b=36 | | (40x−21)=(31−2x)=(x+14) | | 11+7x=-2(5-5x) | | 5c-c=36 | | 197−5n=6n+22=n+7 | | 5n−19=n+7=144−6n | | 3(x+1)+9=0 | | 5x-8x+3=4-10 | | 3(b+40)=2b+40 | | -6(6+6x)-(-1-8x)=-7 | | 6-(2/5t)=2-(1/5t) | | 3x−4=12x+5 | | 12+-3y=-6 | | 5(x-3)=5(2x-8)-3 | | 0.5+11=4+-3a | | -7-2x=7(4x-1) | | 64x-16x=120 | | 200=2x-x | | -3=5x=42 | | 6(y=3)=72 |